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Abstract

Inspired by recent progress of hierarchical reinforcement
learning and adversarial text generation, we introduce a hi-
erarchical adversarial attention based model to generate
natural language description of images. The model auto-
matically learns to align the attention over images and sub-
goal vectors in the process of caption generation. We de-
scribe how we can train, use and understand the model by
showing its performance on Flickr8k. We also visualize the
subgoal vectors and attention over images during genera-
tion procedures.

1. Introduction
Image captioning is a classical form of scene understand-

ing problem, which is considered as one of the primary
goals of computer vision. The generation of captions from
images has various practical applications, such as naviga-
tion for the blind and aiding the visually impaired. More
significantly, it is a core problem connecting computer vi-
sion and natural language processing.

Image captioning models take an image as input and out-
put a sequence text that describes its content. Basically, this
problem consists of two sub-tasks. One is capturing, to rec-
ognize the objects and their mutual relationships in pictures.
The other is expressing, to construct a language model ca-
pable of expressing the captured information of pictures in
a natural language.

For the first problem, there are lots of previous work with
impressive performance, using different paradigms such as
item recognition, attention mechanism, etc. Show, Attend
and Tell [1] (AttendCap), in particular, is one of the rep-
resentative work which bases the image feature extraction
mainly on the attention mechanism. According to its ex-
periment results, the learned attention distribution over im-
ages is impressively consistent to that of human-beings’ in-
tuitions, though not perfectly.

However, for the second problem, not much remarkable
work has been proposed. Most image captioning models
adopt the paradigm mentioned in [2]. They train a RNN lan-

guage model via Maximum Likelihood Estimation[3] that
learns to combine the inputs from various object fragments
detected in the original images to form a caption. How-
ever, as is proved by Huszar[4], this method suffers from
so-called exposure bias. A simple mistake in the prefix
will make the language model out of hand. Scheduled sam-
pling [5] is then proposed to address this problem, however
soon proved to be fundamentally inconsistent according to
Huszar[4].

It’s necessary to notice that, recently, adversarial meth-
ods such as Generative Adversarial Nets[6] (GANs) have
had a great impact on generative tasks. One of its variants,
Sequence Generative Adversarial Nets(SeqGAN) [7], ex-
tends GANs to the language modeling tasks by adversarial
reinforcement learning via Policy Gradient [8]. And then it
is improved as LeakGAN [9], with the generative model re-
placed by a hierarchical reinforcement learning architecture
called Feudal Network [10]. In this case, Feudal Network
serves as the mechanism that explicitly convert the feature
extracted by LeakGAN’s discriminative model into a guid-
ance that directs the rest part of the generative model to gen-
erate text with high-quality. Motivated by the drawbacks of
current image captioning models and the progress of gener-
ative framework, we design a new paradigm for the image
captioning problem.

In this paper, we propose a new image captioning model
called HACap i.e. Hierarchical Adversarial-attentional Cap-
tioning to exploit both advantages of AttendCap and Leak-
GAN. The hierarchical method seems very natural for im-
age captioning, since intuitively the process of cognition,
understanding and expression of images is hierarchical it-
self. To avoid the model’s being limited by human designs,
instead of setting subtasks for this problem manually, we
design a hierarchical architecture to automatically illustrate
the hierarchy of task.

The contributions of this paper are the following:

• We propose a hierarchical image captioning model
based on some ideas derived from LeakGAN and At-
tendCap.

• We show that this hierarchical adversarial method

1
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presents alignment between attention over images and
subgoal vectors from captioning process, which is cog-
nitive consistency to human priors without supervision
in some cases.

2. Related Works
In this section, we describe relevant background on two

parts: image caption generation and text generation. The
former shapes our main framework of model and the lat-
ter gives us the improved orientation of the current mod-
els. The combination of development in these two research
fields shows our advantages on addressing the prominent
interdisciplinary research problem.

Image captioning is regarded as a kind of transla-
tion from images to natural language and from this
point, sequence to sequence training with encoder-decoder
framework[11] seems natural to be applied to address this
task. In the captions generation process given the image and
previous word, a feed forward neural network with a multi-
modal log-bilinear[12] model is implemented to predict the
next word, which is then replaced by recurrent neural net-
work in[13] and [14] and further is followed by LSTM[15].
In all above methods, features are extracted by a CNN to
represent the input images while another scheme[16] utilize
the result of object detection from R-CNN and output of a
bidirectional RNN to learn a joint embedding space.

Then attention mechanisms have been introduced to
encoder-decoder frameworks by Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention
(AttendCap) [1], which has been practically proven effec-
tive. For the capturing task, it adopts a multilayer Con-
vNet as the image-end feature extractor i.e. the encoder of
the seq2seq framework. For the expressing part, it utilize a
peephole LSTM [17] as the decoder of the seq2seq frame-
work. Before being sent into the LSTM, the features are at-
tended due to the language context. There are two versions
of its attention mechanism. One is the stochastic “hard”
attention, that is to say, for each possible location of the
attention, it is either fully attended or not attended at all.
This is not differentiable, thus need to be trained via vari-
ational approximations or REINFORCE. The other is the
“soft” attention, which allows partial attention described by
a factor αt,i. It is differentiable and thus can be trained via
backpropogation. Its attention mechanism has already taken
significant steps in the direction of conveying information
selectively. But, the feedback about images is restricted to
some extent for being sent back directly from the decoder.
To make better use of the decoder’s feedback, we imple-
ment another hierarchical framework motivated by a series
of research in text generation.

In text generation task, Long Text Generation via Adver-
sarial Training with Leaked Information (LeakGAN) [9] is
a state-of-the-art framework. As is mentioned before, the

conventional methods for text generation part in image cap-
tioning tend to train a RNN language model via Maximum
Likelihood Estimation. For each instance of the dataset,
which contains an image and its corresponding caption, the
neural network recurrently reinforces the probability of the
current given token with the prefix subsequence before the
occurrence of the token, which is treated as a prior. This is
also a classical approach for most all2seq tasks. However,
this approach can not avoid exposure bias, which is due
to the discrepancy between RNN language models train-
ing and inference stage: the models whole process of se-
quentially generating the next token is based on previously
generated tokens during inference, however itself is trained
to generate tokens given ground-truth prefixes. Following
improving methods such as Scheduled sampling are pro-
posed to solve the problem but soon proved to be funda-
mentally inconsistent. Motivated by a variety of generative
adversarial models used in continuous generative tasks, es-
pecially those of computer vision tasks such as style trans-
ferring [18], super resolution [19], etc, researchers explore
the potential of generative adversarial networks for discrete
tasks. Though GANs cannot be directly applied to language
modeling, since the distribution of language is usually con-
sidered as discrete and not differentiable, there are some
works leading the trend. Sequence Generative Adversar-
ial Net (SeqGAN) [7], as a typical one, extends GANs to
the language modeling tasks by adversarial reinforcement
learning via Policy Gradient [8]. Particularly, for each time
step an estimation of Q-value is produced through Monte-
Carlo search [7] on the current processed prefix. An inter-
esting fact is that the Maximum Likelihood Estimation can
be regarded as policy-based reinforcement learning with
only episode-replaying where each recorded action is re-
warded by 1.0. Therefore SeqGAN is a natural extension of
the MLE method with adversarial settings.

SeqGAN is then improved as LeakGAN, with hierar-
chical adversarial language model, which allows its dis-
criminative module leak its own high-level extracted fea-
tures to the generative module to further help the guid-
ance. The generator part incorporates such informative,
non-scalar signals into all generation steps through an ad-
ditional MANAGER model, which takes the extracted fea-
tures of current generated words and outputs a latent vec-
tor to guide the WORKER module for next-word prediction.
With extensive experiments on synthetic data and various
real-world tasks with Turing test, the authors of LeakGAN
show that LeakGAN is highly effective in long text genera-
tion and also improves performance in short text generation
scenarios (including caption-like scenarios). Another im-
portant and interesting feature of LeakGAN is that it man-
ages to implicitly learn sentence structures through only the
interactions between MANAGER and WORKER without any
supervision.

2
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Figure 1. The architecture of our model, which take an image as input and output a sequence of words.

3. Methodology
3.1. Overview

The ultimate goal of HACap model is to output captions
with an image as input. We first present an encoder that ex-
tracts features from input images. Then these features, or
annotations, after being processed by an attention mecha-
nism, are conveyed to a decoder to generate corresponding
outputs. The core insight of the model lies in the corre-
spondences between the attention over images and subgoal
vectors provided by decoder.

3.2. Basic Formulation

Following the schedules of AttendCap, we formalize
the image captioning problem as a special sequence-to-
sequence problem. As is shown in Figure 4, for each time
step, the model takes a single raw image and generates a
caption y encoded as a 1-of-K encoded words i.e. C one-
hot vectors.

y = {y1, ...,yC},yi ∈ RK

where K is the size of the vocabulary and C is the length of
the caption.

3.3. Encoder: Convolutional Features

A multilayer convolutional neural network is applied on
the image in order to extract a set of features which are re-
ferred as annotation vectors. The extractor produces L D-
dimensional vectors, each of which represent a local region
of the image.

a = {a1, ...,aL},ai ∈ RD

3.4. Decoder: Hierarchical GAN

We design a hierarchical GAN as our language model
inspired by LeakGAN’s structure. In our framework, there
also are two modules called MANAGER and WORKER in
the generative part, as well as a discriminative net which
is allowed to leak high-level extracted features to MAN-
AGER. For hierarchical generation, the MANAGER make
use of guidance from the discriminator and produce sub-
goal vectors, which are a kind of instructive information in
sentences.

Both the generatorGθ and the discriminatorDφ are Sim-
ple Recurrent Unit (SRU)[20] with a forget gate ft, a reset
gatert and highway connections[21]. Given an input, which
is a concat of language context xt and image context zt at
time t, combined with the architecture of SRU, the formulas
are as follows:

x̃t = W(xt ⊕ zt)

ft = σ(Wf (xt ⊕ zt) + bf )

rt = σ(Wr(xt ⊕ zt) + br)

ct = ft � ct−1 + (1− ft)� x̃t

ht = rt � g(ct) + (1− rt)�Wh(xt ⊕ zt)

where xt, zt, ft, , rt, ct,ht are the language context, the im-
age context, forget gate, reset gate, memory cell and hidden
state of the SRU, respectively. g(·) is an activation function
used to produce the output state ht.

3.5. Attention: Instructive Information

In input terms of the decoder, the image context vector zt
is a dynamic representation of the relevant part of the image

3
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input at time t. We design the a mechanism Φ, the soft
attention model, which was first introduced by Bahdanau et
al.[22], that derives zt from the annotation vectors a:

zt = Φ ({ai} , {αi})

where Φ is a function that returns a single vector
given the set of annotation vectors and their corresponding
weights. It can be considered as a kind of mask over the im-
age, representing for the relative emphasis we put on each
image location, or the probability that which location is the
right place to focus to generate the next word.

More specifically, in each time step, the attention model
fatt will generate a positive weight α for each location i.
We use a multilayer perceptron conditioned on the hidden
features ft provided by the WORKER SRU in Gθ following
the formula:

et,i =fatt(ai, ft)

=We(ReLU(Limgai + Llangft + ba))

αt,i,n =
exp(et,i,n)∑n
k=1 exp(et,i,k)

.

where We, Limg , Llang are all fully connected layers,
ba is bias term.

The soft attention model help speeding the training pro-
cess and convergence. It also can assist to avoid facing a too
sparse problem with horrible variance since the language
model is already based on reinforcement learning. Besides,
we use a form of doubly stochastic regularization. By con-
struction,

∑
t αti = 1.0 as they are the output of a softmax.

As is proposed in AttendCap, this method can be interpreted
as encouraging the model to pay equal attention to every
part of the image over the course of generation. They ob-
served that this penalty was important quantitatively to im-
proving overall BLEU score and that qualitatively this leads
to more rich and descriptive captions. In this approach, at
each time step t, the attention model predicts a gating scalar
β from previous hidden state ht−1 , such that,

Φ ({ai} , {αi}) = β

L∑
i

αiai

where βt = σ(fβ(ft)). Note that in this case, attention
weights put more emphasis on the objects in the images by
including the scalar β.

4. Training Procedure
4.1. Features Extraction with Decoder

We use the ResNet[23], as the decoder to extract the an-
notations ai. ResNet inserts shortcut connections, which are
those skipping one or more layers, over plain networks as is
shown in Figure 2 to address vanishing/exploding gradients

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.[23]

and overfitting. The function F(x) represents the residual
mapping to be learned. The operation F + x is performed
by an element-wise addition.

In our experiment we use the pre-trained model in ten-
sorflow.Keras, which is acclaimed to be trained without fine
tuning on ImageNet. Specifically, we use the 14×14×1024
feature map as the spatial feature outputs so the decoder op-
erates on the flattened 196× 1024 encoding.

4.2. Context Construction with Attention

To convert the extracted annotations to context with in-
formation from generated language sequence, our attention
mechanism utilize the features from the WORKER generator
as instructions. In the course of computing attention func-
tion parameters, the WORKER generator serves as a guide
from the part of expression to assist the process of capturing
and there is no gradient sent back to the language model. In
every time step, our attention module receives G’s feature
representation, e.g., the feature map of the WORKER SRU,
and uses it to form soft attention.

During practical training process, we implement Dou-
bly Stochastic Regularization method mentioned in Attend-
Cap. After being processed by attention, the annotations
with 1024 dimensions in 196 positions become context with
1024 dimensions.

4.3. Word Generation with Decoder

For generation part, at each time step, the MANAGER
receives the leaked feature vector ft from the discrimina-
tor Dφ, whose extractor is implemented by a three layers
SRU. The leaked information is further combined with cur-
rent hidden state of the MANAGER with 256 dimensions to
produce the subgoal vector gt , with 6 dimensions, under
the guidance of which the WORKER module takes the con-
cat of current word xt and image context zt as input and
take a final action at current state.

We implement an end-to-end manner using a policy gra-
dient algorithm. Both the MANAGER and WORKER mod-
ules are trained to minimize the joint loss function. In
the course of training, MANAGER tends to predict advan-
tageous directions in the discriminative feature space and
WORKER is intrinsically rewarded to follow such direc-
tions.
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(a) (b) (c) (d) (e)

(c)

(d)

(a) (including the initial uniform attention):

(b)

original picture:

Figure 3. Examples of semantic alignment in ground truth. Left is the subgoal vector during text generation. Right is attention over time
segment by segment. Notice that the picture in the end of the last segment is the same as the first one in the next segment.

4.4. Initialization and Other Settings

For the initialization, we use orthogonal method for
those RNN models and a scheme called Xavier initializa-
tion proposed by[24] for the others.

To start up, the initial context are processed to be an av-
erage of the annotation vectors. Before being fed into the
generator, we concatenate it to a start-up token x0, which
serves as the initial word and will not appear in the final
sentence output.

Concretely, this is an end-to-end model that minimizes
the following penalized negative log-likelihood:

Ld = − log(P (y|x))

5. Experiments

5.1. Data

We measure the performance of this architecture on the
popular Flickr8k dataset which has 8,000 images. Each
image is accompanied by at least five captions of vary-
ing length. We use official regularizations of the captions,
which simplify the tense and plural form of words. The vo-
cabulary size is around 5,000 adapted to the dataset, and the
maximum sentence length is restricted to 20, which covers
97.5% of the data.

5.2. Semantic Alignment in Ground Truth

to be finished

5.3. Semantic Alignment in Generated Captions

to be finished

5.4. Analysis

We investigate the quality of the inferred attention and
subgoal vector alignment with visualization. The result of
these experiments can be found in Fig??.

More descriptions about specific details in figures to be
finished, the monotonic segment of each dimension of the
subgoal vector illustrates sub-structures of the captionsi.e.
semantic segments

We notice that our model learned the segment-wise
alignments while the prior work AttendCap focus on point-
wise ones, which can be explained as a result of highway
connections. SRU used in our model and LSTM in Attend-
Cap differ in how the hidden information is passed. Adding
highway connections results in better generalization in time
horizon by incorporating extra information.

We also observe that there is something that soft atten-
tion is potential to handle while single-head hard attention
can hardly handle. As is shown in Figure

However, the time cost of our training and inference
procedures is higher than that of simple RNN language
model. The extra spend is due to the calculation of subgoal
(MANAGER) and sub-feature (WORKER) proposals. And in
some cases, we find that the subgoal vectors suffer collapse
with all vectors representing the similar goal. We can try
to implement normalization to alleviate the problem of goal
collapse furthermore.

6. Conclusion

We propose a hierarchical, adversarial, attention based
approach for image captioning that has more potential to fit
the pixel-to-text distribution in reality. By simply testing

5
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(b) (c) (d)(a)

original picture: (a)
(including the initial uniform attention)

(b)

(c)

(d)

Insurance Segment:

Figure 4. Examples of semantic alignment in generated captions.

the framework on Flickr8k dataset, an appealing observa-
tion of our model is that it learns to modulate the attention
to align with the subgoal vector. That means it has some in-
teresting finding about the inner correspondences between
attention-goal pair. We also visualize the attention and its
corresponding subgoal produced by the MANAGER to ver-
ify if the graphical semantic and linguistic semantic is well
aligned.

7. Future Works
• Although our finding is encouraging, the time cost

of training process is too high. It remains thinking
whether there is a more sensitive implementation of
our framework for a more effective procedure.

• As is described above, our model has learned some in-
tuitively connected pattern between graphical semantic
and linguistic semantic information. However, the fi-
nal quantitive results such as matrix like BLEU are not
so satisfying. The optimization of network structure
and hyperparameters may be one of the directions to
assist the interpretable attention-goal correspondences
to leverage the strengths for further improvement.

• Just like most image captioning models, our feature
extractor pre-trained without fine tuning. In this case,
there is an orientation for framework optimization to
apply the fine tuning into the network structure.

• We notice that although some of our outputs are very
fluent and natural due to the guidance of MANAGER.
However, not all natural text is strongly related to orig-
inal images, this may be due to the mode collapse
caused by the hierarchical architecture since discrimi-
nator is only trained to discriminate between real and
fake text. It is not, under our current settings, explicitly

evaluate whether a caption is practically appropriate
for an image. In future work, we will try to introduce
context information into the discriminative model to
better guide the WORKER.

• We modify the decoder to improve the performance of
caption generation by utilizing the linguistic guidance
from discriminator to generator. Furthermore, we can
implement supervised semantic alignment method to
set another kind of information from content compari-
son to provide semantic guidance for generator.
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